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Abstract

The dynamic behavior of a multi-span non-uniform continuous bridge under a moving vehicle is studied
by considering the effect of interaction between the structure, the road surface roughness and the vehicle.
The bridge is modeled as a multi-span continuous Benoulli–Euler beam with non-uniform cross-section on
linear spring supports with large stiffness. The vehicle is modeled as a group of moving loads at a fixed
spacing. Numerical simulation and laboratory tests were performed on a single-span and a two-span beam.
The first span is found to exhibit smaller dynamic responses compared with the other spans for both
constant speed vehicle and with vehicle braking due to the smaller initial conditions of the vehicle at entry
of the span. Braking of the vehicle generates excitation forces covering a wide range of frequencies and this
requires a large number of vibration modes for an accurate prediction on the responses. Since braking in
one span would create response in different spans, a more correct definition of impact factor with vehicle
braking should be based on a comparison of the maximum dynamic and static responses at the same span
in which braking occurs.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of bridge vibration caused by a moving vehicle has been studied extensively in the
past. The researches can generally be categorized under nine headings [1]: the effect of suspension
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Nomenclature

rAðxÞ mass per unit length of beam
EIðxÞ flexural stiffness of the beam
PsðtÞ the interaction force between the mov-

ing vehicle and the bridge
x̂sðtÞ location of the axle
wðx; tÞ lateral deflection of the beam at time t

and position x

W iðxÞ mode shape function of the ith mode
qiðtÞ ith modal coordinate
R number of supports
y1; y2 rotation at the centroid of the tractor

and the trailer, respectively
xc1; xc2; yc1; yc2 vertical and horizontal displace-

ments of the centroid of the tractor and
trailer, respectively

ai; b1; b2 vehicle dimension parameters
E Young’s modulus
Fd the driving force of vehicle
T, U kinetic and potential energy, respec-

tively, of the bridge–vehicle system
W work of the non-conservative forces of

the bridge–vehicle system
J1; J2 rotational moments of inertia of the

tractor and the trailer, respectively
mi mass of each part of the vehicle
L the length of the beam
S1;S2 vehicle dimensions

zc
1; z

c
2 vertical displacements of the centroid of

the tractor and the trailer, respectively,
due to movement of the vehicle sup-
ports

Mb;Kb;Cb mass, stiffness, and damping ma-
trices of the bridge

Mc;Kc;Cc mass, stiffness, and damping ma-
trices of the vehicle system

Fb;Fc generalized forces of the bridge and the
vehicle system

d(x) the road surface roughness function
d 0ðxÞ first derivative of d(x)

W 0
i ðxÞ;W

00
i ðxÞ first and second derivatives of

Wi(x)

tb braking rise time
WUiðxÞ vibration mode of the uniform beam
Sdðf Þ displacement PSD of the bridge surface

roughness
f the spatial frequency (cycles/m)
f0 the reference spatial frequency (cycles/m)
D distance interval between successive

ordinates of the surface profile
yi ith set of independent random phase

angles uniformly distributed between 0
and 2p

d variational symbol
fdmax amplitude of the braking force
Id ; Im impact factor from deflection and mo-

ment, respectively.
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systems, road surface roughness, bridge span length, vehicle braking, axle spacing, gross
vehicle weight, vehicle speed, unit mass of bridge and bridge damping. Many numerical methods
have been developed to study the influence of different factors on the dynamic behavior of
the bridge.
The bridge structure has been modeled with the finite element method using the beam element

[2], grillage method [3,4], eight-node quadrilateral Kirchhoff plate/shell element and three-node
Euler–Benoulli beam [1,5,6], plate elements [7], and as an assemblage of beam and plate
elements [8].
The vehicle has been modeled with different degrees of complexity. The simplest model is a

quarter truck vehicle model [9–11]. The other two common models are the two-dimensional
models [2,8,12,13]; and the three-dimensional models [1,2,4–7,14].
Based on the above models, the bridge–vehicle system is divided into subsystems with an

interface between the bridge and the vehicle. The equations of motion of the bridge and the
vehicle are in general solved separately by an iterative procedure [15]. Henchi et al. [6] solves the



ARTICLE IN PRESS

S.S. Law, X.Q. Zhu / Journal of Sound and Vibration 282 (2005) 805–830 807
coupled equations of motion directly by the central difference method. Yang and Lin [16] and
Yang and Yau [17] developed a vehicle–bridge interaction element, and the method can be used to
solve the problem with a series of vehicles moving in the same direction.
Most of the published works are on vehicles moving at a constant speed, and few works

have been found to investigate the bridge dynamic response with non-uniform vehicle speed.
A redistribution of the axle load occurs when the vehicle is subjected to braking, and this
causes a significant change in the dynamic response of the bridge. The resulting dynamic
effect may exceed those allowed for in the current design practice. Kishan and Traill-Nash [18]
studied the braking effect on the bridge response with the bridge deck idealized as a simply
supported beam. Gupta and Traill-Nash [19] presented impact factors from braking of a
two-axle vehicle on a single-span bridge deck using a ramped braking function. Mulcahy [14]
presented the moment amplification factors from braking of a three-axle vehicle on a single-span
bridge deck. Later Chompooming and Yener [8] discussed the effect of vehicle deceleration on the
bridge dynamics. Since most of the modern bridges are non-uniform in cross-section, continuous
and are of long span, the study on the response of this type of bridge under moving vehicles is
important.
This paper reports on the study of a dynamic response of a multi-span continuous bridge under

a moving vehicle by considering the effect of interaction between the road pavement roughness
and the braking of the vehicle. The analysis is presented for a three-axle tractor–trailer vehicle and
the bridge is modeled as a multi-span continuous Euler–Benoulli beam with non-uniform cross-
section. The intermediate supports are modeled as linear springs with large stiffness. The mode
shapes of this non-uniform beam are calculated basing on the Ritz method. The initial vehicle
position at braking, the amplitude of the braking force, the braking rise time, initial vehicle speed,
different road classes of the ISO standard [20], and their effects on the impact factors are
discussed. A single-span uniform bridge and a three-span non-uniform continuous bridge are
studied in the simulation. Laboratory verification using a single-span and a two-span beam under
braking from a moving vehicle is also reported. The effects of the different factors on the impact
factors particularly for the three-span bridge are discussed.
2. Vehicle and bridge models

A tractor–trailer vehicle is studied as a representative of modern freight vehicle. The model of a
seven-degree-of-freedom (7-dof) tractor–trailer vehicle is shown in Fig. 1. The seven vertical dof’s
are denoted by yi and those at the contact points between the wheels and the pavement are
denoted by zi. Each vehicle axle has its stiffness and damping from the suspensions denoted with
subscripts 1, 2 and 3, and a tyre stiffness and damping denoted with subscripts 4, 5 and 6. The
mass of each axle assembly is denoted by m3, m4 and m5 and that of the tractor and trailer are m1

and m2, respectively.
The bridge superstructure is modeled as a non-uniform continuous Euler–Bernoulli beam as

shown in Fig. 2 with (R�1) intermediate vertical point supports. This model is representative of a
modern bridge superstructure which is usually non-uniform and continuous. PsðtÞ; s ¼ 1; 2; 3

� �
are the axle forces from the moving vehicle. The force locations are denoted by x̂sðtÞ; ðs ¼ 1; 2; 3Þ
measured from the left support. The motion of the centroids of the tractor and trailer can then be
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Fig. 1. Model of a seven degree-of-freedom vehicle.
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Fig. 2. A continuous beam with (R�1) intermediate point supports under the moving vehicle.
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expressed in terms of the seven dof’s of the vehicle model and the co-ordinates at the contact
points between the bridge and the vehicle.
2.1. Vehicle-bridge interaction

The vertical displacements and rotations of the vehicle are relative to the static equilibrium
position, and the coordinates zi are measured from the static equilibrium position without the
vehicle. The tyres are assumed to remain in contact with the bridge surface at all times. The
intermediate supports are modeled as vertical linear springs with large stiffness to simulate bridge
piers which are practically not perfectly rigid. The horizontal direction of the intermediate
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supports is not restrained. The kinetic energy T and the potential energy U of the vehicle–bridge
system can be obtained as

T ¼ Tb þ Tc

¼
1

2

Z L

0

rAðxÞ
@wðx; tÞ

@t

� �2

dx þ 1
2
m1 _y

2
c1 þ

1
2
J1

_y
2

1 þ
1
2
m2 _y

2
c2

þ 1
2
J2

_y
2

2 þ
1
2
m3 _y

2
4 þ

1
2
m4 _y

2
5 þ

1
2
m5 _y

2
6 þ

1

2

X5
i¼3

mi
_̂xsðtÞ

2
þ 1

2
m1 _x

2
c1 þ

1
2
m2 _x

2
c2

U ¼ Ub þ Uc

¼
1

2

Z L

0

EIðxÞ
@2wðx; tÞ

@x2

� �2

dx þ 1
2
ks

XR�1

i¼1

wðxi; tÞ
2
þ 1

2
k1ðy1 � y4Þ

2
þ 1

2
k2ðy2 � y5Þ

2
þ 1

2
k3ðy3 � y6Þ

2

þ 1
2k7ðy7 � a3y2 � a4y1Þ

2
� m1gzc

1 � m2gzc
2 � m3gz1 � m4gz2 � m5gz3; ð1Þ

where subscripts c and b denote the contributions from the vehicle and the bridge, respectively; r
is the density of material of the bridge; AðxÞ is the cross-sectional area; E is Young’s modulus; IðxÞ

is the moment of inertia of the beam cross-section; wðx; tÞ is the vertical displacement of the beam;
xi ði ¼ 0; 1; 2; . . . ;RÞ are the coordinates of intermediate point supports and end supports, ks is the
stiffness of the linear spring at the point constraints. yc1 and yc2 are the vertical displacements and
xc1 and xc2 are the horizontal locations of the centroids of the tractor and the trailer, respectively,
with subscripts 1 and 2 denoting the tractor and the trailer, respectively. J1 and J2 are the
rotational moments of inertia of the tractor and the trailer, respectively, and g is the acceleration
due to gravity. The bridge is assumed in equilibrium under its own weight before the vehicle enters
the deck.
By separation of variables, the vertical displacement of the beam wðx; tÞ can be expressed as

wðx; tÞ ¼
Pn

i¼1

qiðtÞW iðxÞ; i ¼ 1; 2; . . . ; nf g; (2)

where W iðxÞ; i ¼ 1; 2; . . . ; n
� �

are the assumed vibration modes that satisfy the boundary
conditions and qiðtÞ; i ¼ 1; 2; . . . ; n

� �
are the modal coordinates of the bridge.

The motion of the vehicle is defined by the vehicle coordinates x̂sðtÞ and yi with the vehicle
moving from left to right. The longitudinal position of the centroids xc1 and xc2 of the tractor and
trailer, respectively, and the axle locations x̂sðtÞ; ðs ¼ 1; 2; 3Þ are relative to the bridge entry. The
longitudinal position and the vertical displacement of the centroids of the tractor and trailer are,
respectively,

xc1 ¼ x̂1ðtÞ � a1S1 � b1S1y1;

xc2 ¼ x̂1ðtÞ � a3S1 � b1S1y1 � a5S2 � b2S2y2;

yc1 ¼ a2y1 þ a1y2;

yc2 ¼ a5y3 þ a6y7 ð3Þ
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and the rotational deformations y1 and y2 of the centroids of the tractor and the trailer are,
respectively,

y1 ¼ ðy1 � y2Þ=S1;

y2 ¼ ðy7 � y3Þ=S2:
(4)

The vertical displacements of the centroids of the tractor and the trailer due to the motion of the
vehicle relative to the contact points with the pavement are, respectively,

zc
1 ¼ a2z1 þ a1z2;

zc
2 ¼ a6ða4z1 þ a3z2Þ þ a5z3: ð5Þ

The work done by the system of non-conservative forces of the bridge-vehicle system can then
be written as

W ¼ W b þ W d þ W a þ W c

¼ QTCb
_Q þ YTCc

_Y þ Fdx̂sðtÞ � P1ðtÞðz1 � y4Þ � P2ðtÞðz2 � y5Þ � P3ðtÞðz3 � y6Þ; ð6Þ

where W b;W d ;W a;W c are the work done by the damping force of the bridge, the driving force of
the vehicle, the interaction forces, and the damping force of the vehicle, respectively. Q ¼

q1ðtÞ; q2ðtÞ; . . . ; qnðtÞ
� �T

is the vector of modal coordinates of the bridge, Fd is the longitudinal
drive force of the vehicle, Cc;Cb are the damping coefficient matrices of the vehicle and the bridge
respectively. P1ðtÞ;P2ðtÞ;P3ðtÞ

� �
are the interaction forces between the vehicle and the bridge

written as

P1ðtÞ ¼ k4ðy4 � z1Þ þ c4ð _y4 � _z1Þ;

P2ðtÞ ¼ k5ðy5 � z2Þ þ c5ð _y5 � _z2Þ;

P3ðtÞ ¼ k6ðy6 � z3Þ þ c6ð _y6 � _z3Þ:

(7)

Sharp change in the road surface causes local changes in the profile acting at the base of the tyre
spring. Mulcahy [14] developed a ‘tyre enveloping’ model on the road surface roughness in which
the profile is approximated by a quadratic parabola. This tends to smooth out the excitation from
changes in the road profile. In the present study, the vertical displacements, zi, at the points of
contact of the wheels and the bridge are given below including the road surface roughness
function d(x) along the horizontal direction (the relation of function d(x) to the road roughness
definition will be given later):

zi ¼ wðx̂iðtÞ; tÞ þ dðx̂iðtÞÞ ði ¼ 1; 2; 3Þ;

_zi ¼ v
@wðx; tÞ

@x

����
x¼x̂iðtÞ

þ
@wðx; tÞ

@t

����
x¼x̂iðtÞ

þ v
@dðxÞ

@x

����
x¼x̂iðtÞ

ði ¼ 1; 2; 3Þ; ð8Þ

where v is the horizontal velocity of the moving vehicle. Since d(x) is independent of x, the last
term in _zi can be equal to zero. The longitudinal position of the second and the third axles are
related to that of the first as

x̂2ðtÞ ¼ x̂1ðtÞ � S1;

x̂3ðtÞ ¼ x̂1ðtÞ � a3S1 � a5S2:
(9)
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Mulcahy [14] has presented the equation of motion for a three-axle vehicle on a single-span
bridge using the Lagrange approach. The equation of motion of a three-axle vehicle on a multi-
span bridge is presented in this paper using the Hamilton principle.Z t2

t1

dðT � V þ W Þ dt ¼ 0 (10)

The equation of motion of the vertical motion of the vehicle–bridge system can be obtained in
both yi and qi coordinates as

Mc
€Y þ Cc

_Y þ KcY ¼ Fc;

Mb
€Q þ Cb

_Q þ KbQ ¼ Fb; ð11Þ

where Y ¼ y1; y2; . . . ; y7
� �T

is the vector of displacements at the seven dof’s of the vehicle, Fc and
Fb are vectors of generalized forces acting on the vehicle and the bridge structure, respectively.
Mc;Kc;Cc and Mb;Kb;Cb are the mass, stiffness and damping matrices of the vehicle and beam,
respectively. All terms in the equation are referred to in Appendix A.
The equation of motion of the horizontal motion of the vehicle in x̂sðtÞ coordinate can also be

written as

X5
i¼3

mi
€̂xsðtÞ � ðm1 þ m2Þb1ð €y1 � €y2Þ � m2b2ð €y7 � €y3Þ

¼ Fd þ
X3
s¼1

Xn

i¼1

W
0

iðx̂sðtÞÞqiðtÞ

" #
P

0

sðtÞ ð12Þ

where P0
s ðtÞ is referred to in Appendix A and

W 0
s ðx̂sðtÞÞ ¼

@W iðxÞ

@x

����
x¼x̂sðtÞ

ði ¼ 1; 2; . . . ; n; s ¼ 1; 2; 3Þ: (13)

The above formulation on the equations of motion of the bridge–vehicle system can be
simplified for a two-axle vehicle by setting to zero the parameters associated with the trailer and
eliminating from the equations of motion the corresponding dof’s. The two-axle vehicle then
corresponds to the tractor of the three-axle model. This modified model will be used in the
experimental verification of the proposed method.
3. Mode shapes of the bridge deck

Mode shapes of the bridge deck are required in the solution of Eq. (2). The Ritz method is
applied to solve for the beam vibration motions. For a single span simply supported beam with
uniform cross-section, the vibration mode shapes are

WUi
ðxÞ ¼ sin

ipx

L

� �
ði ¼ 1; 2; . . . ; nÞ; (14)



ARTICLE IN PRESS

S.S. Law, X.Q. Zhu / Journal of Sound and Vibration 282 (2005) 805–830812
where n is the number of vibration modes. The vertical displacement of the beam can be assumed
as a combination of these mode shapes satisfying the boundary conditions of the non-uniform
beam as

W ðxÞ ¼
Xr

i¼1

biW Ui
ðxÞ; (15)

where bi; i ¼ 1; 2; . . . ; rf g is a set of constant coefficients. The problem is to find these coefficients
by minimizing the following integral:

Z ¼

Z L

0

EIðxÞðW 00ðxÞÞ2 � o2rAðxÞðW ðxÞÞ2
� �

dx (16)

to have

ðK 0 � o2MÞb ¼ 0; (17)

where K0 and M are n	 n matrices with their components k0
jj and mjj given in Eq. (18), and

b ¼ b1; b2; . . . ; bnf g is an n	 1 vector.

k0
ij ¼

R L

0 EIðxÞW 00
UiðxÞW

00
UjðxÞ dx

mij ¼
R L

0 rAðxÞWUiðxÞWUjðxÞ dx
ði ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; nÞ: (18)

Rewrite Eq. (17) as

ðD � o2IÞb0 ¼ 0 (19)

and solving, we have

D ¼ K 0 M�1; b0 ¼ Mb; (20)

where o2 and b0 are the eigenvalues and the eigenvectors of the matrix D. The vertical
displacement of the beam W(x) can then be obtained from Eq. (15).
4. Road surface roughness

The randomness of the road surface roughness can be represented with a periodic modulated
random process. In ISO-8608 [20] specifications, the road surface roughness is related to the
vehicle speed by a formula between the velocity power spectral density (PSD) and the
displacement PSD. The general form of the displacement PSD of the road surface roughness is
given as

Sdðf Þ ¼ Sdðf 0Þ 
 ðf =f 0Þ
�a; (21)

where f 0ð¼ 0:1 cycles=mÞ is the reference spatial frequency, a is an exponent of the PSD, and f is
the spatial frequency (cycles/m). Eq. (21) gives an estimate on the degree of roughness of the road
from the value of Sdðf 0Þ: This surface roughness classification is based on a constant vehicle
velocity PSD and taking a equals to 2.
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The road surface roughness function d(x) in the time domain can be simulated by applying the
inverse fast fourier transformation on Sd ðf iÞ to give [6]

dðxÞ ¼
XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Sdðf iÞDf

p
cosð2pf ix þ yiÞ; (22)

where f i ¼ iDf is the spatial frequency, Df ¼ 1=ðNDÞ; D is the distance interval between
successive ordinates of the surface profile, N is the number of data points, and yi is a set of
independent random phase angles uniformly distributed between 0 and 2p.
5. Procedure of implementation

The coupled equations of motion of the bridge-vehicle system presented in Eqs. (11) and (12)
are subjected to the compatibility constraints on the interaction forces and the displacements of
the two sub-systems. The procedure to solve the problem is implemented as follows:

Step 1: The mode shapes Wi(x) of the non-uniform multi-span continuous bridge deck are
calculated from Eq. (17) to (20).

Step 2: Determine the mass, stiffness and damping matrices of both the vehicle and the bridge
deck.

Step 3: Calculate the road surface roughness function d(x) from Eq. (22) according to the
selected road class in ISO-8608 [20].

Step 4: The responses of the bridge and vehicle are calculated by the Newmark method. The
time step, parameters of Newmark method and the error for convergence are determined before
the iteration. Set the initial values of Q and Y.

Step 5: Determine the initial vehicle position on the bridge deck.
Step 6: Calculate the excitation force on vehicle, Fc, and solve for the motion of the vehicle, Y,

at time t from Eqs. (11) and (12).
Step 7: Calculate the excitation force on the bridge, Fb, and solve for the motion of the bridge,

Q, at time t from Eq. (11).
Step 8: Solve for the displacement of the bridge w(x,t) from Eq. (2).
Step 9: Repeat Steps 6–8 using the calculated Q and Y. Check the convergence of the difference

between the two successively calculated w(x,t)i and w(x,t)i+1.

wðx; tÞiþ1 � wðx; tÞi
���� � tolerance error: (23)

Step 10: If convergence is not achieved, repeat Steps 6–9. If convergence is achieved, repeat
Steps 5–10 for the next time step.
6. Numerical study

The three-axle tractor-trailer vehicle shown in Fig. 1 is used in the study. The properties of the
vehicle are physically measured [14] and they are as follows.
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The body masses are

m1 ¼ 3930 kg; m2 ¼ 15;700 kg; m3 ¼ 220 kg; m4 ¼ 1500 kg; m5 ¼ 1000 kg:

The vertical stiffness at each dof is

k1 ¼ 2:00	 106 N=m; k2 ¼ 4:60	 106 N=m; k3 ¼ 5:00	 106 N=m; k4 ¼ 1:73	 106 N=m;

k5 ¼ 3:74	 106 N=m; k6 ¼ 4:60	 106 N=m; k7 ¼ 2:00	 106 N=m

and their respective viscous damping constants are

c1 ¼ 5000 N
s=m; c2 ¼ 30; 000 N
s=m; c3 ¼ 40; 000 N
s=m; c4 ¼ 1200 N
s=m;

c5 ¼ 3900 N
s=m; c6 ¼ 4300 N
s=m; c7 ¼ 5000 N
s=m:

The axle spacing and the pitching moment of inertia of the tractor and the trailer are respectively,

S1 ¼ 3:66 m; S2 ¼ 6:20 m; J1 ¼ 1:05	 104 kgm2; J2 ¼ 1:47	 105 kgm2:

The parameters on the dimensions of the vehicle are

a1 ¼ 0:5; a2 ¼ 0:5; a3 ¼ 1:0; a4 ¼ 0:0; a5 ¼ 0:58; a6 ¼ 0:42; b1 ¼ 0:25; b2 ¼ 0:40:

Initially, both the vehicle and bridge are assumed to be at rest and the vehicle is traveling
forward at a uniform velocity. A ramp function is assumed for the braking force [19]. This is
based on the test results on highway vehicles conducted by the Transport and Road
Research Laboratory, England, in 1975. The braking force increases linearly to a maximum
Fd max and then stays constant until the vehicle either comes to a stop or crosses the bridge span
and is written as

Fd ¼
�Fd maxt=tb; totb;

�Fd max; t � tb;

�
(24)

where tb is the braking rise time.
The impact factors Id and Im calculated from the mid-span deflections and bending moments

are defined, respectively, as

Id ¼
wdynamic

wstatic
; Im ¼

Bdynamic

Bstatic
; (25)

where wdynamic;wstatic;Bdynamic and Bstatic are the dynamic and static maximum deflections and
bending moments at mid-span of the beam. wstatic and Bstatic are obtained from an analysis with
the vehicle crossing the bridge deck at a crawling speed.

Example 1. (A Uniform Single-Span Bridge Deck). No reference can be found in the literature on
the use of non-uniform beam model in simulation studies, and hence the simply supported bridge
deck studied by Mulcahy [14] is adopted for comparison. It is 32.6m long with 16m effective
width, and the mass per unit area is 1240 kg/m2. The flexural stiffness of the bridge superstructure
is 4:592	 1010 N m2: The vehicle to bridge mass ratio is 0.0346. It is modeled as a simply
supported uniform beam. The first 10 modes are used in the solution of the equation of motion
in Eq. (11) and (12). A time step of 0.008 s is used in the integration, and it is approximately



ARTICLE IN PRESS

S.S. Law, X.Q. Zhu / Journal of Sound and Vibration 282 (2005) 805–830 815
one-tenth of the highest natural frequency of the bridge superstructure included in the analysis.
This small time step is essential because braking produces an impulsive force that consists of
frequency components over a wide spectrum.
The three-axle vehicle described previously is traveling at 17m/s and it brakes at one-quarter

span. The impact factors from mid-span bending moments and deflections are studied with
variations in the following parameters:
(a)
Fig.

?0
amplitude of the braking force Fd max ¼ 0:6mcg; 0:4mcg; 0:2mcgð Þ; where mcg is the vehicle
static weight;
(b)
 braking rise time, tb= 0.6, 0.3 and 0.0 s;

(c)
 braking position of the vehicle;

(d)
 vehicle horizontal moving velocity; and

(e)
 different classes of road with the road surface roughness as specified in the ISO-8608 [20].

Road Classes A to E are used in the study.
The maximum impact factors computed for different braking force and braking locations are
plotted in Figs. 3 and 4 with no surface roughness included in the analysis. These factors are the
maximum values for the duration when the vehicle is on top of the bridge deck. The maximum
impact factors for different classes of roads are presented in Table 1. The following observations
are made:
(a)
 Fig. 3 shows that the variation of braking force Fd max has little effect on the maximum impact
factor which is around 1.0 for all the magnitudes of braking force under study.
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Table 1

Impact factors with different road surface conditions (single-span bridge deck)

Road class A B C D E

1.7m/s no braking Deflection 1.09 1.06 1.14 1.24 1.79

Moment 1.08 1.05 1.12 1.22 1.71

17m/s no braking Deflection 1.04 1.05 1.13 1.27 1.55

Moment 1.04 1.04 1.10 1.23 1.49

17m/s braking at 1/4 span Deflection 1.08 1.17 1.32 1.62 2.24

Moment 1.07 1.15 1.29 1.59 2.20
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(b)
 Fig. 4 shows that the duration of braking rise time tb has a very significant effect on the
maximum impact factor, and braking within the first quarter span produces large impact
factor compared with braking at other locations of the span. The impact factors produced
from a hard braking tb=0.3 s. is approximately 1.30 while that from a sharp braking with
tb=0.0 s. is approximately 1.42.
(c)
 Braking on the approach is not studied. Braking on the approach produces non-zero initial
displacement and velocity of the vehicle at the entry point of the bridge, but the equivalent
impulsive force from braking does not act on the bridge span. The dynamic effect depends on
the characteristics of the vehicle suspension system, but it would be less severe than braking
inside the bridge span in general.
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(d)
 Table 1 shows the maximum impact factor for different road surface conditions when the
vehicle is moving at 1.7 and 17m/s or braking with a braking force of 0.6mcg at a rise time of
0.6 s at one-quarter span. There is only slight difference in the impact factor for the cases
traveling at constant velocity on Classes A–D roads. Also braking causes a distinctly higher
impact factor when compared with the no braking cases on Classes C–E roads. Road Class E
exhibits the worst dynamic responses with or without braking.
(e)
 The case of traveling at low velocity on Class E road has a significantly higher impact factor
than that with a higher velocity. When the road roughness peaks are defined over a long time
interval (lower speed), the vehicle would experience a lower frequency excitation closer to its
own natural frequency, thus generating larger excitation force and larger dynamic responses in
the bridge deck.
Example 2. (A Three-Span Continuous Non-Uniform Bridge Deck). A modern non-uniform
three-span box-section bridge deck [21] shown in Fig. 5 is modeled as a 36m-48m-36m three-span
non-uniform continuous beam. The intermediate support stiffness is 109N/m. It is noted that too
large a stiffness value would cause ill-condition in the solution of the problem. The vehicle to
bridge mass ratio is 0.0235. The time step required in the calculation of responses is taken as
0.0147 s taking into account the first ten modes of the bridge superstructure in the analysis. The
mode shape function for the continuous beam is referred to [22]. The same three-axle vehicle is
used in the study.
The dynamic effects are studied with variations in the influencing parameters for com-

parison. The maximum impact factors are plotted in Figs. 6–9 and 11, and the maximum impact
36m 48m 36m

1.8m 1.8m6m

B
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Fig. 5. A three-span continuous bridge.
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factors for different classes of roads are shown in Tables 2 and 3. The following observations
are made:
(a)
 Fig. 6 shows that the maximum impact factors at the mid-span of each of the three spans for
different constant travelling velocities as a reference. No road surface roughness is included in
the analysis. The impact factors are generally small even at high velocities. The impact factor
is smallest in the second span among the three spans. This may be due to its higher flexibility
compared with the other two spans.
(b)
 Fig. 7 shows the time histories of the impact factors resulting from braking at positions 2/7, 3/
7 and 4/7 of the total bridge span, L, with 2/7L almost on the second support, and 3/7L and 4/
7L are inside the second span. The vehicle initial velocity is 17m/s, and Class B road is
considered. The vehicle braking force Fd max=0.6mcg and the braking rise time tb =0.6 s. The
impact factor from the second span is largest for these braking locations among the three
spans. The impact factors are in general small with the highest value of 1.04 for braking at 3/7
span.
(c)
 Fig. 8 shows the time histories of impact factor from the vehicle braking at 3/7L on a Class B
road moving with an initial velocity of 17m/s. The braking rise time tb is found to have a
significant effect on the impact factor with a value of 1.17 for a hard braking at tb=0.3 s. In
the case of a sharp braking at tb=0.0 sec., the impact factor is 1.49. It is noted that the
oscillating component in the responses in Figs. 7–9 is due to the large pitching action of the
vehicle arising from braking.
(d)
 Fig. 9 shows the time histories of impact factor at the middle of the second span from braking
at 1/3L (within the second span) on a Class B road with an initial velocity of 17m/s. The
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Table 2

Impact factor from deflection and moment with different road surface conditions (three-span bridge deck)

Road class Span A B C D E

17m/s no braking Deflection impact factor 1 1.01 1.02 1.08 1.19 1.40

2 1.02 1.05 1.11 1.24 1.50

3 1.07 1.15 1.32 1.65 2.29

Moment impact factor 1 1.05 1.06 1.12 1.24 1.45

2 1.02 1.05 1.11 1.23 1.49

3 1.11 1.20 1.37 1.71 2.33

1.7m/s no braking Deflection impact factor 1 1.00 1.03 1.10 1.24 1.34

2 1.02 1.08 1.15 1.30 1.59

3 1.01 1.05 1.10 1.14 1.46

Moment impact factor 1 1.04 1.06 1.11 1.25 1.35

2 1.02 1.07 1.12 1.25 1.49

3 1.04 1.08 1.12 1.17 1.46
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braking force Fd max has a little effect on the maximum impact factor with the largest value of
1.14 for Fd max=0.6mcg. The corresponding interaction axle forces are shown in Fig. 10. The
curves indicate approximately proportional increase in the interaction forces in the first and
the third axles, while that in the second axle exhibits very small change with Fd max. This
phenomenon is due to the pitching action of the vehicle.
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Table 3

Impact factor from deflection and moment in the second span with different braking position of vehicle on different

classes of road

Road class A B C D E

Brake at 1/7L Deflection 0.43 0.45 0.51 0.69 1.05

Moment 0.48 0.49 0.52 0.67 0.96

Brake at 2/7L Deflection 1.03 1.04 1.10 1.24 1.65

Moment 1.02 1.03 1.09 1.02 1.55

Brake at 3/7L Deflection 1.03 1.06 1.12 1.26 1.50

Moment 1.03 1.06 1.11 1.23 1.47

Brake at 4/7L Deflection 1.02 1.05 1.11 1.24 1.50

Moment 1.02 1.05 1.11 1.23 1.49

Brake at 5/7L Deflection 1.02 1.05 1.11 1.24 1.50

Moment 1.02 1.05 1.11 1.23 1.49

Brake at 6/7L Deflection 1.02 1.05 1.11 1.24 1.50

Moment 1.02 1.05 1.11 1.23 1.49
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Fig. 10. Interaction axle forces from different amplitude of braking force (— 0.6mcg; - - - 0.4mcg; ? 0.2mcg).

S.S. Law, X.Q. Zhu / Journal of Sound and Vibration 282 (2005) 805–830 821
(e)
 Fig. 11 gives the maximum impact factors at the second span from different vehicle velocity
and braking positions. The vehicle braking force Fd max=0.6mcg and the braking rise time tb

=0.6 s. Both factors have little effect on the impact factor when braking occurs at 1/7L. This is
because braking occurs at the first span and the vehicle never reaches the middle of the second



ARTICLE IN PRESS

10 11 12 13 14 15 16 17 18 19 20
0.8

0.9

1

1.1

1.2

10 11 12 13 14 15 16 17 18 19 20
0.8

0.9

1

1.1

1.2

from deflection

from bending moment

initial vehicle speed (m/s)

m
ax

. i
m

pa
ct

 fa
ct

or
m

ax
. i

m
pa

ct
 fa

ct
or

(a)

(b)

Fig. 11. Maximum impact factor from different initial vehicle speed and braking position (braking at: — 1/7L; - - - 2/

7L; ? 3/7L).

S.S. Law, X.Q. Zhu / Journal of Sound and Vibration 282 (2005) 805–830822
span. When braking occurs at 3/7L, all the impact factors are larger than unity, and it
gradually decreases with higher velocity. The maximum is approximately 1.15 at 10m/s
velocity, the lower end of the velocity range. When braking occurs at 2/7L, which is almost on
top of the second support, it creates compression in the suspension system of the vehicle. And
when it comes into the second span, the vehicle will bounce on top of the bridge deck causing
higher impact factors than usual. However, their values are not higher than those obtained
when braking at the most critical location of 3/7L as seen in Fig. 11.
(f)
 Table 2 shows the impact factor for different classes of roads. The impact factor increases with
velocity very significantly only in the third span, and there is very small change in the other
spans. Both bending moments and deflections give approximately the same impact factor.
Since spans 1 and 3 are identical, this difference may be due to the different initial conditions
of the vehicle at entry to the two spans (zero initial conditions for span 1 and non-zero
conditions for span 3). This can also be found in Fig. 6 where the maximum impact factors are
similar for both spans 1 and 3, but the impact factors here are larger due to the inclusion of
road surface roughness in the analysis.
(g)
 Table 3 shows the impact factor for the case of Fd max=0.6mcg, tb= 0.6 s and 17m/s initial
velocity with braking at different locations. The maximum impact factor increases slightly
with the road surface roughness in road Classes A–E, and the impact factor from deflection
and moment are approximately the same for all Road Classes. Small impact factors are found
when braking starts at 1/7L and the reason is as explained for Fig. 11. Those factors from
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braking at 3/7L are largest, and those from braking beyond 3/7L are the same. This is similar
to the observation for a single-span beam where braking within the first quarter span produces
the most dynamic responses. A more correct definition of impact factor for a continuous beam
is therefore needed from the above observations. The impact factor due to braking effect
should be based on a comparison of the maximum dynamic and static responses at the same
span in which braking occurs.
7. Experiments and results

The experimental setup has been reported previously [22] and is briefly described here for clarity
on the test procedures. It is shown diagrammatically in Fig. 12. The main beam, 3678mm long
with a 100mm	 25mm uniform cross-section, is simply supported. There is a leading beam for
accelerating the vehicle and a tailing beam to accept the vehicle when it comes out of the main
span. A U-shaped aluminum section is glued to the upper surface of the beams as a direction
guide for the car. The model car is pulled along the guide by a string wound around the drive
wheel of an electric motor. Thirteen photoelectric sensors are mounted on the beams to measure
and monitor the moving speed of the car. Seven strain gauges are evenly located on the beam to
measure the bending moment responses of the beam. A TEAC 14-channels magnetic tape
recorder and an 8-channel dynamic testing and analysis system are used for data collection and
analysis in the experiment. The sampling frequency is 2000Hz.The recorded length of each test
lasts for 6 s. The model car has two axles at a space of 0.557m and it runs on four steel wheels with
rubber band on the outside. The mass of the whole car is 16.6 kg or 11.8 kg for the experiments
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Fig. 12. Experimental setup of the bridge-vehicle system.
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described below. The braking force was applied with a set of rubber bands between two fixed
anchorage points. It was placed in front of the vehicle approximately at the level of its centroid,
and the braking force was adjusted by adjusting the tension in the rubber band.
Since there is no distinct suspension system in the model car, the vertical stiffness Kc and the

damping Cc are not considered, and the car is modeled as a rigid body moving on top of the beam.
The beam sub-system has very small damping, and hence the damping stiffness Cb is set to zero in
the computation. In the study with a two-span continuous beam, the same main beam is used with
the intermediate support at 1.875m from the left end.

7.1. Experiment on a single-span simply supported beam

A time step of 0.005 s is adopted in the integration of the responses in the solution of the
equations of motion, and this covers the first six modes of the beam structure.
The first experiment is conducted with the mass of the car equals 16.6 kg. The vehicle speed is

1.22m/s, and it brakes at 0.878m from the left support. The car gets outside the main beam at the
end of braking. Fig. 13 shows the measured and the calculated strains at 1/4L, 1/2L and 3/4L. The
strains at each cross-section are very close to the measured ones indicating good estimates on the
responses of the structure under the braking action of a moving vehicle using the proposed
method. There is a slight under-estimation in the 1/4L strain when the vehicle moves away from
the section, and there is a slight overestimation in the 3/4L strain when the vehicle moves towards
the section. This is due to the gentle slope in the beam under its own weight that is not included in
the formulation of the road surface roughness function.
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The second experiment is conducted with a larger braking force. The vehicle speed is 1.12m/s,
and the mass of the whole car is 11.8 kg. It brakes at 1.4m from the left support, and the car
eventually stops on top of the beam. Fig. 14 shows the measured and the calculated strains. There
is a large difference between the strains at 1/2L soon after braking. This is due to the pitching
motion of the vehicle at braking which is equivalent to an application of an impulsive force on the
beam causing large responses. The responses from the higher modes have not been included in the
calculation. The large response forming the second mode of the beam is also absent at this
location.
7.2. Experiment on a two-span continuous beam

A time step of 0.002 s is adopted in the integration of the responses in the solution of the
equations of motion, and this covers the first five modes of the beam structure.
The third experiment is conducted with the mass of the whole car equals to 16.6 kg. The vehicle

speed is 1.25m/s, and it brakes at 0.878m from the left support. The car stops outside the main
beam. Fig. 15 shows a distinct periodic response in the 1/4L strain when the vehicle is on the first
span. This response corresponds to the second mode of the beam, and it is believed to be the result
of excitation by the unsteady motion of the vehicle. Similar large fluctuations in the 3/4L strain
are also found when the vehicle is around the middle of the second span. The calculated strains
vary close to the experimental values.
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The fourth experiment is conducted with a larger breaking force. The mass of the whole car is
11.8 kg. It moves at 1.75m/s and it brakes at 1.4m from the left support. The car eventually stops
on top of the beam. Fig. 16 shows large fluctuations in the measured strains but with the mean
very close to the calculated strains. This fluctuation in the strain response is due to the large
pitching motion of the vehicle induced by the braking force from the rubber bands which are not
placed at exactly the level of center of gravity of the vehicle, thus causing large and unsteady
motion of the vehicle.
8. Conclusions

Numerical and experimental studies have been performed on the dynamic responses of simply
supported single-span and two-span bridge decks modeled as Euler–Bernoulli beams. Several
important observations have been made on the characteristics of the dynamic responses under a
traveling vehicle modeled as a group of moving loads:


 Vehicle traveling at low speed over a very rough road surface may experience excitations at
frequencies close to its own natural frequencies, generating large excitation force on the bridge
deck and leading to larger dynamic response in the structure.


 The suspension system of the vehicle has a significant effect on the dynamic responses of the
bridge deck under moving load, particularly with vehicle braking on top of the structure. The
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Fig. 16. Measured and calculated strains from hard braking on the two-span beam (— calculated; - - - measured).
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pitching action of the vehicle during constant speed movement or braking creates large
oscillations in the dynamic responses of the structure which are at the pitching frequency of the
vehicle.


 For a multi-span bridge deck, the dynamic response is different for each span, and is smallest in
the second span of the three-span bridge deck under study. This difference is larger in the case
with braking of vehicle. A more correct definition of impact factor with vehicle braking should
be based on a comparison of the maximum dynamic and static responses at the same span in
which braking occurs.


 The dynamic response in the first span of a multi-span bridge is smaller than that in the other
spans because of the smaller initial conditions of the vehicle at entry of the first span compared
with those for the other spans.


 Vehicle braking generates an equivalent impulsive force covering a wide range of frequencies. A
large number of vibration modes is required in the computation for a higher accuracy in the
dynamic responses of the structure.
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Appendix A

The equations of motion of the vertical motion of the vehicle-bridge system are

Mc
€Y þ Cc

_Y þ KcY ¼ Fc;

Mb
€Q þ Cb

_Q þ KbQ ¼ Fb; ð11Þ

where

Fc ¼ �ðm1 þ m2Þb1 €̂x1ðtÞ; ðm1 þ m2Þb1 €̂x1ðtÞ; m2b2 €̂x1ðtÞ;
n
�P1ðtÞ; �P2ðtÞ; �P3ðtÞ; �m2b2 €̂x1ðtÞ

oT
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X3
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0

sðtÞ; i ¼ 1; 2; . . . ; n

( )
;

P0
1ðtÞ ¼ P1ðtÞ þ ðm1a2 þ m2a4a6 þ m3Þg;

P0
2ðtÞ ¼ P2ðtÞ þ ðm1a1 þ m2a3a6 þ m4Þg;

P0
3ðtÞ ¼ P3ðtÞ þ ðm2a5 þ m5Þg;

Y ¼ y1; y2; . . . ; y7
� �T
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Q ¼ q1ðtÞ; q2ðtÞ; . . . ; qnðtÞ
� �T

;

Mb ¼

Z L
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� �
;
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EIðxÞW 00
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Mc2 ¼ diagðm3;m4;m5Þ;

Mc3 ¼ m2b1b2 �m2b1b2 m2a5a6 �
J2

S2
2

� m2b
2
2

� �
;
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Mc4 ¼ m2ða
2
6 þ b22Þ þ

J2

S2
2

" #
;

Kc1 ¼

k1 þ k7a
2
4 k7a3a4 0

k7a3a4 k2 þ k7a
2
3 0

0 0 k3

2
664

3
775;

Kc2 ¼ diagðk1; k2; k3; k4Þ;

Kc3 ¼ �k7a4 �k7a3 0
� �

;

Kc4 ¼ k7f g:
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